Math 246C Lecture 22 Notes

Daniel Raban

May 22, 2019

1 Regularization of Subharmonic Functions and L^2 Estimates for the $\overline{\partial}$ Operator

1.1 Regularization of subharmonic functions

Let $u \in SH(\Omega)$ be $u \not\equiv -\infty$. Let $0 \leq \varphi \in C_0^{\infty}(\mathbb{C})$ be such that $\varphi = 0$ for $|z| \geq 1$, φ is radially symmetric, and $\int \varphi = 1$. Define

$$u_{\varepsilon} = u * \varphi_{\varepsilon} = \int u(z-\zeta)\varphi_{\varepsilon}(\zeta) L(d\zeta), \qquad \varphi_{\varepsilon}(z) = \frac{1}{\varepsilon^2}\varphi\left(\frac{z}{\varepsilon}\right),$$

and let $\Omega_{\varepsilon} = \{ z \in \Omega : \operatorname{dist}(z, \Omega^c) > \varepsilon \},\$

Proposition 1.1. $u_{\varepsilon} \in (C^{\infty} \cap SH)(\Omega_{\varepsilon})$, and $u_{\varepsilon} \downarrow u$ as $\varepsilon \downarrow 0$.

Proof. We have already shown the first statement, and we have shown that $u_{\varepsilon} \ge 0$ for all $\varepsilon > 0$.

We want to check that $u_{\varepsilon} \downarrow u$ as $\varepsilon \downarrow 0$. As φ is radially symmetric, we have

$$u_{\varepsilon}(z) = \int \varphi(r) r \underbrace{\left(\int_{0}^{2\pi} u(z + \varepsilon r e^{it}) dt\right)}_{\text{increasing with } \varepsilon} dr.$$

We get that $\lim_{\varepsilon \to 0} u_{\varepsilon} \in SH(\Omega)$ and is $\geq u$. On the other hand, by Fatou's lemma,

$$\limsup_{\varepsilon \to 0} \int u(z + \varepsilon\zeta)\varphi(\zeta) L(d\zeta) \le \int \limsup_{\varepsilon \to 0} u(z + \varepsilon\zeta)\varphi(\zeta) L(d\zeta) \le u(z)$$

by the upper semicontinuity of u. So $u_{\varepsilon} \downarrow u$.

Remark 1.1. Regularization arguments show the following: if $u \in SH(\Omega)$, where $u \neq -\infty$ and Ω is connected, then

$$\int u\Delta\varphi L(ds) \ge 0 \qquad \forall 0 \le \varphi \in C_0^\infty(\Omega).$$

Conversely, assume that $U \in L^1_{loc}(\Omega)$ such that

$$\int U\Delta\varphi\,L(d\zeta)\geq 0$$

Then there exists a unique $u \in SH(\Omega)$ such that u = U a.e.

1.2 L^2 estimates for the $\overline{\partial}$ operator

Let $\Omega \subseteq \mathbb{C}$ be open. Consider the Cauchy-Riemann equation

$$\frac{\partial u}{\partial \overline{z}} = f.$$

Recall that if $f \in C^{\infty}(\Omega)$, there exists some $u \in C^{\infty}(\Omega)$ solving this equation. We want to solve the equation with $f \in L^2_{loc}(\Omega)$ and get *estimates* for the solution.

Definition 1.1. Let $f \in L^2_{loc}(\Omega)$. We say that $u \in L^2_{loc}$ is a solution in the weak sense of the Cauchy-Riemann equation if for all $\eta \in C^{\infty}_0(\Omega)$,

$$-\int u\partial_{\overline{z}}\beta L(dz) = \int f\beta L(dz).$$

Theorem 1.1 (Hörmander¹). Let $\Omega \subseteq \mathbb{C}$ be open, and let $\varphi \in C^{\infty}(\Omega)$ be strictly subharmonic: $\Delta \varphi > 0$ in Ω . Then, for any $f \in L^2_{loc}(\Omega)$ such that

$$\int \frac{|f|^2}{\varphi_{z,\overline{z}}''} e^{-\varphi} L(dz) < \infty,$$

there exists a weak solution $u \in L^2_{loc}(\Omega)$ to $\frac{\partial u}{\partial \overline{z}} = f$ such that

$$\int_{\Omega} |u|^2 e^{-\varphi} L(dz) \le \int_{\Omega} \frac{|f|^2}{\varphi_{z,\overline{z}}''} e^{-\varphi} L(dz)$$

Proof. We shall work in the Hilbert space

$$L^2_{\varphi} = L^2(\Omega, e^{-\varphi}) = \left\{ f: \Omega \to \mathbb{C} \text{ measurable } \mid \|f\|_{L^2_{\varphi}} := \int |f| e^{-\varphi} L(dz) < \infty \right\}.$$

Consider the linear operator $T: L^2_{\varphi} \to L^2_{\varphi}$ given by $Tu = \frac{\partial u}{\partial \overline{z}}$ equipped with the domain

$$D(T) = \left\{ u \in L^2_{\varphi} : \exists f \in L^2_{\varphi} \text{ s.t. } f = \frac{\partial u}{\partial \overline{z}} \text{ weakly: } -\int u \partial_{\overline{z}}\beta = \int f\beta \,\forall \beta \in C_0^{\infty}(\Omega) \right\}.$$

¹This result, unlike the other results we have been proving, is fairly recent. It was proven in 1965.

Then D(T) is dense in L^2_{φ} , and Tu = f.

We have the adjoint $T^* =: \overline{\partial}_{\varphi}^*$ of T:

$$\left\langle \overline{\partial}, \beta \right\rangle_{L^2_{\varphi}} = \langle u, \overline{\partial}_{\varphi}^* \beta \rangle_{L^2_{\varphi}} \qquad \forall u \in D(T), \beta \in C_0^{\infty}(\Omega).$$

Compute $\overline{\partial}_{\varphi}^*$:

$$\left\langle \partial \overline{u},\beta\right\rangle_{L^2_{\varphi}} = \int \overline{\partial} u \underbrace{\overline{\beta} e^{-\varphi}}_{\in C^\infty_0} L(dz) = -\int u \partial_{\overline{z}}(\overline{\beta} e^{-\varphi}) L(dz) = \int u \overline{\overline{\partial}}_{\varphi}^* \overline{\beta} e^{-\varphi} L(dz).$$

We get that

$$\overline{\partial}_{\varphi}^*\beta = -e^{\varphi}\partial_z(\beta e^{-\varphi}) = -\partial_z\beta + (\partial_z\varphi)\beta.$$

The idea is that to get a solvability result for $\overline{\partial}$ acting on L^2_{φ} , we need an a priori estimate for $\overline{\partial}^*_{\varphi}$.

Before we continue with the proof, we need the following proposition:

Proposition 1.2. Let $f \in L^2_{loc}(\Omega)$, and let C > 0 be constant. Then there exists a $u \in L^2_{loc}(\Omega)$ such that $\overline{\partial}u = f$ and $\int |u|^2 e^{-\varphi} L(dz) \leq C$ if and only if

$$\left|\int f\overline{\beta}e^{-\varphi} L(dz)\right| \le C \int |\overline{\partial}_{\varphi}^*\beta|^2 e^{-\varphi} L(dz) \qquad \forall \beta \in C_0^{\infty}(\Omega)$$

Proof. (\implies): We have by Cauchy-Schwarz that

$$\left|\int f\overline{\beta}e^{-\varphi} L(dz)\right| = \left|\int \overline{\partial}u\overline{\beta}e^{-\varphi} L(dz)\right| = \left|\langle u, \overline{\partial}_{\varphi}^*\beta\rangle_{L_{\varphi}^2}\right| \le C^{1/2} \|\overline{\partial}_{\varphi}^*\beta\|_{L_{\varphi}^2}$$

(\Leftarrow): Assume that the bound holds. The linear functional

$$F(\overline{\partial}_{\varphi}^{*}\beta) = \overline{\int f\overline{\beta}e^{-\varphi} L(dz)}.$$

is well-defined on $\overline{\partial}_{\varphi}^* C_0^{\infty}(\Omega) \subseteq L_{\varphi}^2$, and $|F(\overline{\partial}_{\varphi}^*\beta)| \leq C^{1/2} \|\overline{\partial}_{\varphi}^*\beta\|_{L_{\varphi}^2}$. So its norm is $\leq C^{1/2}$. By the Hahn-Banach theorem, F extends to all of L_{φ}^2 . So there is a $u \in L_{\varphi}^2$ representing the linear functional F.